团体公平指标是评估基于预测决策系统公平性的既定方法。但是,这些指标仍然与哲学理论相关,其道德含义通常不清楚。我们提出了一个一般框架,用于分析基于分配正义理论的决策系统的公平性,包括与不同规范立场相对应的不同既定的“正义模式”。我们表明,最受欢迎的集体公平度量指标可以解释为我们方法的特殊情况。因此,我们为群体公平指标提供了一个统一和解释的框架,该框架揭示了与它们相关的规范性选择,并允许理解其道德实质。同时,我们提供了可能公平指标的延伸空间,而不是公平ML文献中当前讨论的指标。我们的框架还允许克服几个群体公平指标的局限性,这些指标在文献中受到批评,最著名的是(1)它们是基于平等的,即他们要求群体之间的某种形式的平等性,这有时可能有害于边缘化。组,(2)他们仅比较跨群体的决策,但对这些群体的后果没有比较,并且(3)分配正义文献的全部广度不足。
translated by 谷歌翻译
在基于预测的决策系统中,不同的观点可能是矛盾的:决策者的短期业务目标通常与决策主体的愿望相抵触。平衡这两个观点是一个价值问题。我们提供一个框架,使这些具有价值的选择清晰可见。为此,我们假设我们获得了一个训练有素的模型,并希望找到平衡决策者和决策主体观点的决策规则。我们提供了一种形式化这两种观点的方法,即评估决策者的效用和对决策主体的公平性。在这两种情况下,这个想法都是从决策者和决策主题中引起的价值观,然后将其变成可衡量的东西。为了进行公平评估,我们以基于福利的公平性的文献为基础,并询问公用事业(或福利)的公平分布是什么样的。在此步骤中,我们以分配正义的著名理论为基础。这使我们能够得出一个公平分数,然后将其与许多不同决策规则的决策者实用程序进行比较。这样,我们提供了一种平衡决策者的实用性的方法,以及对基于预测的决策系统的决策主体的公平性。
translated by 谷歌翻译
在本文中,我们对机器学习文献中统计公平性辩论的两个标准进行道德分析:1)组之间的校准和2)组之间的假阳性和假负率的平等。在我们的论文中,我们专注于支持任何一种措施的道德论点。群体校准与假阳性和假负率平等之间的冲突是有关从业者团体公平定义的辩论中的核心问题之一。对于任何彻底的道德分析,必须明确并正确定义公平性的含义。对于我们的论文,我们将公平等同于(非)歧视,这是关于群体公平的讨论中的合理理解。更具体地说,我们将其等同于表面上的错误歧视,从某种意义上说,这用于Lippert-Rasmussen教授对此定义的处理。在本文中,我们认为违反群体校准的行为在某些情况下可能是不公平的,但在其他情况下并不公平。这与文献中已经提出的主张一致,即应以对上下文敏感的方式定义算法公平性。最重要的实际含义是基于基于示例的论点,即公平性需要组间校准或假阳性/假阴性率的平等性,并没有概括。因为在一种情况下,组校准可能是公平的要求,而不是另一种情况。
translated by 谷歌翻译
Existing automated techniques for software documentation typically attempt to reason between two main sources of information: code and natural language. However, this reasoning process is often complicated by the lexical gap between more abstract natural language and more structured programming languages. One potential bridge for this gap is the Graphical User Interface (GUI), as GUIs inherently encode salient information about underlying program functionality into rich, pixel-based data representations. This paper offers one of the first comprehensive empirical investigations into the connection between GUIs and functional, natural language descriptions of software. First, we collect, analyze, and open source a large dataset of functional GUI descriptions consisting of 45,998 descriptions for 10,204 screenshots from popular Android applications. The descriptions were obtained from human labelers and underwent several quality control mechanisms. To gain insight into the representational potential of GUIs, we investigate the ability of four Neural Image Captioning models to predict natural language descriptions of varying granularity when provided a screenshot as input. We evaluate these models quantitatively, using common machine translation metrics, and qualitatively through a large-scale user study. Finally, we offer learned lessons and a discussion of the potential shown by multimodal models to enhance future techniques for automated software documentation.
translated by 谷歌翻译
Background: Image analysis applications in digital pathology include various methods for segmenting regions of interest. Their identification is one of the most complex steps, and therefore of great interest for the study of robust methods that do not necessarily rely on a machine learning (ML) approach. Method: A fully automatic and optimized segmentation process for different datasets is a prerequisite for classifying and diagnosing Indirect ImmunoFluorescence (IIF) raw data. This study describes a deterministic computational neuroscience approach for identifying cells and nuclei. It is far from the conventional neural network approach, but it is equivalent to their quantitative and qualitative performance, and it is also solid to adversative noise. The method is robust, based on formally correct functions, and does not suffer from tuning on specific data sets. Results: This work demonstrates the robustness of the method against the variability of parameters, such as image size, mode, and signal-to-noise ratio. We validated the method on two datasets (Neuroblastoma and NucleusSegData) using images annotated by independent medical doctors. Conclusions: The definition of deterministic and formally correct methods, from a functional to a structural point of view, guarantees the achievement of optimized and functionally correct results. The excellent performance of our deterministic method (NeuronalAlg) to segment cells and nuclei from fluorescence images was measured with quantitative indicators and compared with those achieved by three published ML approaches.
translated by 谷歌翻译
Detecting anomalous data within time series is a very relevant task in pattern recognition and machine learning, with many possible applications that range from disease prevention in medicine, e.g., detecting early alterations of the health status before it can clearly be defined as "illness" up to monitoring industrial plants. Regarding this latter application, detecting anomalies in an industrial plant's status firstly prevents serious damages that would require a long interruption of the production process. Secondly, it permits optimal scheduling of maintenance interventions by limiting them to urgent situations. At the same time, they typically follow a fixed prudential schedule according to which components are substituted well before the end of their expected lifetime. This paper describes a case study regarding the monitoring of the status of Laser-guided Vehicles (LGVs) batteries, on which we worked as our contribution to project SUPER (Supercomputing Unified Platform, Emilia Romagna) aimed at establishing and demonstrating a regional High-Performance Computing platform that is going to represent the main Italian supercomputing environment for both computing power and data volume.
translated by 谷歌翻译
Graph Neural Networks (GNNs) achieve state-of-the-art performance on graph-structured data across numerous domains. Their underlying ability to represent nodes as summaries of their vicinities has proven effective for homophilous graphs in particular, in which same-type nodes tend to connect. On heterophilous graphs, in which different-type nodes are likely connected, GNNs perform less consistently, as neighborhood information might be less representative or even misleading. On the other hand, GNN performance is not inferior on all heterophilous graphs, and there is a lack of understanding of what other graph properties affect GNN performance. In this work, we highlight the limitations of the widely used homophily ratio and the recent Cross-Class Neighborhood Similarity (CCNS) metric in estimating GNN performance. To overcome these limitations, we introduce 2-hop Neighbor Class Similarity (2NCS), a new quantitative graph structural property that correlates with GNN performance more strongly and consistently than alternative metrics. 2NCS considers two-hop neighborhoods as a theoretically derived consequence of the two-step label propagation process governing GCN's training-inference process. Experiments on one synthetic and eight real-world graph datasets confirm consistent improvements over existing metrics in estimating the accuracy of GCN- and GAT-based architectures on the node classification task.
translated by 谷歌翻译
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing. A key issue is how to address the inherent non-linearity of classical deep learning, a problem in the quantum domain due to the fact that the composition of an arbitrary number of quantum gates, consisting of a series of sequential unitary transformations, is intrinsically linear. This problem has been variously approached in the literature, principally via the introduction of measurements between layers of unitary transformations. In this paper, we introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning typically associated with superior generalization performance in the classical domain, specifically, hierarchical feature learning. Our approach generalizes the notion of Quantum Neural Tangent Kernel, which has been used to study the dynamics of classical and quantum machine learning models. The Quantum Path Kernel exploits the parameter trajectory, i.e. the curve delineated by model parameters as they evolve during training, enabling the representation of differential layer-wise convergence behaviors, or the formation of hierarchical parametric dependencies, in terms of their manifestation in the gradient space of the predictor function. We evaluate our approach with respect to variants of the classification of Gaussian XOR mixtures - an artificial but emblematic problem that intrinsically requires multilevel learning in order to achieve optimal class separation.
translated by 谷歌翻译
Objective: Accurate visual classification of bladder tissue during Trans-Urethral Resection of Bladder Tumor (TURBT) procedures is essential to improve early cancer diagnosis and treatment. During TURBT interventions, White Light Imaging (WLI) and Narrow Band Imaging (NBI) techniques are used for lesion detection. Each imaging technique provides diverse visual information that allows clinicians to identify and classify cancerous lesions. Computer vision methods that use both imaging techniques could improve endoscopic diagnosis. We address the challenge of tissue classification when annotations are available only in one domain, in our case WLI, and the endoscopic images correspond to an unpaired dataset, i.e. there is no exact equivalent for every image in both NBI and WLI domains. Method: We propose a semi-surprised Generative Adversarial Network (GAN)-based method composed of three main components: a teacher network trained on the labeled WLI data; a cycle-consistency GAN to perform unpaired image-to-image translation, and a multi-input student network. To ensure the quality of the synthetic images generated by the proposed GAN we perform a detailed quantitative, and qualitative analysis with the help of specialists. Conclusion: The overall average classification accuracy, precision, and recall obtained with the proposed method for tissue classification are 0.90, 0.88, and 0.89 respectively, while the same metrics obtained in the unlabeled domain (NBI) are 0.92, 0.64, and 0.94 respectively. The quality of the generated images is reliable enough to deceive specialists. Significance: This study shows the potential of using semi-supervised GAN-based classification to improve bladder tissue classification when annotations are limited in multi-domain data.
translated by 谷歌翻译
Computational notebooks, such as Jupyter notebooks, are interactive computing environments that are ubiquitous among data scientists to perform data wrangling and analytic tasks. To measure the performance of AI pair programmers that automatically synthesize programs for those tasks given natural language (NL) intents from users, we build ARCADE, a benchmark of 1082 code generation problems using the pandas data analysis framework in data science notebooks. ARCADE features multiple rounds of NL-to-code problems from the same notebook. It requires a model to understand rich multi-modal contexts, such as existing notebook cells and their execution states as well as previous turns of interaction. To establish a strong baseline on this challenging task, we develop PaChiNCo, a 62B code language model (LM) for Python computational notebooks, which significantly outperforms public code LMs. Finally, we explore few-shot prompting strategies to elicit better code with step-by-step decomposition and NL explanation, showing the potential to improve the diversity and explainability of model predictions.
translated by 谷歌翻译